# Mathematical Imaging with Optical Coherence Tomography and Photoacoustics

#### Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>

<sup>1</sup>Computational Science Center, University Vienna, Austria

&

<sup>2</sup> Radon Institute of Computational and Applied Mathematics (RICAM), Linz, Austria

## Outline

# OCT and Photoacoustics OCT

Photoacoustics

#### Modeling aspects

- Attenuation
- Examples of attenuation models

#### 3) Inversion of the integrated photoacoustic operator

- Strongly attenuating media
- Weakly attenuating media

#### Backprojection formulae

#### OCT Images



Figure: Data B. Zebhian, W. Drexler: Medical University of Vienna

#### FШF

# Physical Scheme of OCT Setup



Figure: OCT System

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coherence

May 5, 2017 4 / 40

FШF

#### **Basics**

#### • Illumination of a specimens with some a short laser pulse

#### **Basics**

- Illumination of a specimens with some a short laser pulse
- Measurements of the backscattered wave: Coherence of the scattered light with the undisturbed original laser pulse

#### Basics

- Illumination of a specimens with some a short laser pulse
- Measurements of the backscattered wave: Coherence of the scattered light with the undisturbed original laser pulse
- Visualization of backscattered light

Reconstruction parameters depend on modeling:

| reconstruction parameter | model               |
|--------------------------|---------------------|
| scattering coefficient   | Boltzmann equation  |
| refractive index         | geometric optics    |
| susceptibility           | Maxwell's equations |

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coherence

#### Photoacoustic setup



Figure: Photoacoustic setup: Robert Nuster and Günther Paltauf (University Graz)

# Applications: Microscopy





Figure: Chicken embryo (5 days old)(1.2 mm) and mouse heart. Data by Berooz Zebian and Wolfgang Drexler, Robert Nuster et al.

Photoacoustic imaging – "Lightning and Thunder" (L.H. Wang)

• Specimen is uniformly illuminated by a short/pulsed electromagnetic pulse (visible or near infrared light - Photoacoustics, microwaves - Thermoacoustics)



# Photoacoustic imaging – "Lightning and Thunder" (L.H. Wang)

- Specimen is uniformly illuminated by a short/pulsed electromagnetic pulse (visible or near infrared light Photoacoustics, microwaves Thermoacoustics)
- Two-step conversion process: Absorbed EM energy is converted into heat ⇒ Material reacts with expansion ⇒ Expansion produces pressure waves

# Photoacoustic imaging – "Lightning and Thunder" (L.H. Wang)

- Specimen is uniformly illuminated by a short/pulsed electromagnetic pulse (visible or near infrared light Photoacoustics, microwaves Thermoacoustics)
- Two-step conversion process: Absorbed EM energy is converted into heat ⇒ Material reacts with expansion ⇒ Expansion produces pressure waves
- Imaging: Pressure waves are detected at the boundary of the object (over time) and are used for reconstruction of conversion parameter (EM energy into expansion/ waves)

ΓШΓ

#### The method in between

DOT (diffuse optical tomography), OCT (optical coherence tomography), SPIM (single plane imaging). MAD (mandibular advancement device), 2P (2 photon),...



Steven Y. Leigh, Ye Chen, Jonathan T.C. Liu, 'Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues," Biomed. Opt. Express 5, 1709-1720 (2014); http://www.confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confocalinel.com/confoca

Image © 2014 Optical Society of America and may be used for noncommercial purposes only. Report a copyright concern regarding this image



IIIF

# Schematic representation



#### Figure: Three kind of problems

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coheren

May 5, 2017 10 / 40

ΓШΓ

# Governing equation of photoacoustics: Standard

Wave equation for the pressure

$$\frac{1}{c_0^2}\frac{\partial^2 p}{\partial t^2}(x,t) - \Delta p(x,t) = \frac{dj}{dt}(t)\mathcal{H}(x)$$

Parameters and functions:

- $\mathcal{H}$  absorbed electromagnetic energy
- *c*<sub>0</sub> speed of sound in most mathematical studies normalized to constant 1
- j(t) can be considered to approximate a  $\delta$ -impulse (Lightning)
- Alternative if  $j = \delta$ : Initial value problem for homogeneous wave equation

$$p(x,0) = \mathcal{H}(x), \quad p_t(x,0) = 0$$

#### Inverse problem of photoacoustics

- measurement data: p(x, t) for  $x \in \mathcal{M}$ , t > 0 measurement region
- Reconstruction of  $\mathcal{H}(x)$  for  $x \in \Omega$

Exact Reconstruction formulae for  $\ensuremath{\mathcal{H}}$  depending on measurement geometry

- Sphere, Cylinder, Plane [Xu, Wang, 2002], [Finch, Patch, Rakesh, 2004]
- Circle [Finch, Haltmeier, Rakesh, 2005]
- Universal Backprojection [Wang et al, 2005, Natterer 2012]
- Palamodov 2014

• ...

FILIE

#### Reconstruction parameters depend on modeling

| Model | reconstruction parameter | model                           |  |
|-------|--------------------------|---------------------------------|--|
| PAT   | absorption density       | Wave equation                   |  |
| QPAT  | absorption coefficient   | Diffusion or Boltzmann equation |  |
| QPAT  | susceptibility           | Maxwell's equations             |  |

#### Medical applications

3. Human Studies, PAT-OCT



Figure: Human studies of combined OCT (optical coherence tomography) andPAI: data by Boris Hermann and Wolfgang DrexlerFUIF

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coherence

May 5, 2017 14 / 40

#### Modeling aspects

Standard Photoacoustics does not model variable sound speed, attenuation and variable illumination and does not recover physical parameters

- Quantitative Photoacoustics (separation of parameters in *H*) [Arridge, Bal, Ken, Scotland, Uhlmann,...]
- Sound speed variations: [Agranovsky, Hristova, Kuchment, Stefanov, Uhlmann,...]
- Attenuation and dispersion [Anastasio, Patch, Riviere, Burgholzer, Kowar, S., Ammari, Wahab, ...]
- Variable Illumination [Wang, Bal,...]
- Finite bandwidth detectors [Haltmeier et al]

ELLIE

# Attenuation

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coherence

May 5, 2017 16 / 40

# Attenuation: Model equation

$$\mathcal{A}_{\kappa}p(x,t) - \Delta p(x,t) = \frac{d\delta}{dt}(t)\mathcal{H}(x)$$
$$p(x,t) = 0 \text{ for } t < 0$$

L: pseudo-differential operator w.r.t. t, with symbol -κ<sup>2</sup>(ω)
Sκ(ω) attenuation law

FШF

# Solution of forward problem

Inverse Fourier-transform with respect to t:

$$\check{f}(\omega) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \mathrm{e}^{\mathrm{i}\omega t} dt$$

Solution of attenuated equation:

$$\check{p}(\omega;x) = -\int_{\mathbb{R}^3} \frac{\mathrm{i}\omega}{4\pi\sqrt{2\pi}} \frac{\mathrm{e}^{\mathrm{i}\kappa(\omega)|x-y|}}{|x-y|} \mathcal{H}(y) dy$$

FШF

# Solution of forward problem

Inverse Fourier-transform with respect to t:

$$\check{f}(\omega) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \mathrm{e}^{\mathrm{i}\omega t} dt$$

Solution of attenuated equation:

$$\check{p}(\omega;x) = -\int_{\mathbb{R}^3} \frac{\mathrm{i}\omega}{4\pi\sqrt{2\pi}} \frac{\mathrm{e}^{\mathrm{i}\kappa(\omega)|x-y|}}{|x-y|} \mathcal{H}(y) dy$$

Object of interest: Time-integrated photoacoustic operator in frequency domain:

$$\check{\mathcal{P}}_{\kappa}\mathcal{H}(\omega;x) = \frac{1}{4\pi\sqrt{2\pi}} \int_{\mathbb{R}^3} \frac{\mathrm{e}^{\mathrm{i}\kappa(\omega)|x-y|}}{|x-y|} \mathcal{H}(y) dy$$

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coheren

May 5, 2017 18 / 40

### Formal definition

of attenuation operator

$$\mathcal{A}_{\kappa}: \mathcal{S}'(\mathbb{R} imes \mathbb{R}^3) o \mathcal{S}'(\mathbb{R} imes \mathbb{R}^3)$$

is defined by the action on the tensor products  $\phi \otimes \psi \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^3)$ , given by  $(\phi \otimes \psi)(t, x) = \phi(t)\psi(x)$ :

$$\langle \mathcal{A}_{\kappa} u, \phi \otimes \psi \rangle_{\mathcal{S}', \mathcal{S}} = - \left\langle u, (\mathcal{F}^{-1} \kappa^2 \mathcal{F} \phi) \otimes \psi \right\rangle_{\mathcal{S}', \mathcal{S}},$$

where

$$\mathcal{F}:\mathcal{S}(\mathbb{R})
ightarrow\mathcal{S}(\mathbb{R}), \quad \mathcal{F}\phi(\omega)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\phi(t)\mathrm{e}^{-\mathrm{i}\omega t}dt$$

denotes the Fourier transform

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coheren

Assumptions on  $\kappa$ 

 $\kappa \in C^{\infty}(\mathbb{R}; \overline{\mathbb{H}})$  with  $\mathbb{H} = \{z \in \mathbb{C} : \Im z > 0\}$  is called attenuation coefficient if

**1** all derivatives of  $\kappa$  are polynomially bounded:

$$orall_{\ell\in\mathbb{N}_0} \exists_{\kappa_1>0,N\in\mathbb{N}} \quad |\kappa^{(\ell)}(\omega)| \leq \kappa_1(1+|\omega|)^{\Lambda_1}$$

there exists a continuous continuation  $\tilde{\kappa} : \overline{\mathbb{H}} \to \overline{\mathbb{H}}$  of  $\kappa$  such that  $\tilde{\kappa} : \mathbb{H} \to \overline{\mathbb{H}}$  is holomorphic. Moreover,

$$\exists_{ ilde\kappa_1>0,N\in\mathbb{N}} \quad | ilde\kappa(z)|\leq ilde\kappa_1(1+|z|)^N \quad orall z\in\overline{\mathbb{H}}$$

~

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coheren

#### Consequences of these assumptions

- **1**  $\mathcal{A}_{\kappa}$  is well-defined:  $\kappa^2 u \in \mathcal{S}'(\mathbb{R}) \quad \forall u \in \mathcal{S}'(\mathbb{R})$
- **2**  $p \in \mathcal{S}'(\mathbb{R} \times \mathbb{R}^3)$  is causal: that is supp $(p) \subseteq [0, \infty) \times \mathbb{R}^3$
- 3  $\mathcal{A}_{\kappa}$  maps real-valued distributions onto itself

#### Attenuation

# Finite speed of propagation

 $p \in \mathcal{S}'(\mathbb{R} \times \mathbb{R}^3)$  propagates with finite speed c > 0 if

supp  $p \subset \{(t, x) \in \mathbb{R} \times \mathbb{R}^3 : |x| \le ct + R\} \quad \forall_h \operatorname{supp} h \subset B_R(0)$ 

#### Lemma

Let  $\kappa$  be an attenuation coefficient with the holomorphic extension  $\tilde{\kappa}: \overline{\mathbb{H}} \to \mathbb{H}.$ 

Then, p propagates with finite speed if and only if

$$\lim_{\omega\to\infty}\frac{\tilde{\kappa}(\mathrm{i}\omega)}{\mathrm{i}\omega}>0$$

In this case, it propagates with the speed  $c = \lim_{\omega \to \infty} \frac{i\omega}{\tilde{\kappa}(i\omega)}$ 

#### Examples of attenuation models

- $\kappa \in C^{\infty}(\mathbb{R}; \overline{\mathbb{H}})$  is called a
  - strong attenuation coefficient if

$$\exists_{\kappa_0,eta>0,\omega_0\geq 0}\quad\Im\kappa(\omega)\geq\kappa_0|\omega|^eta$$
 ,  $\qquadorall\omega\in\mathbb{R}$  ,  $|\omega|\geq\omega_0$ 

• weak attenuation coefficient if it is of the form

$$\exists_{c>0,\kappa_{\infty}\geq 0}\exists_{\kappa_{*}\in C^{\infty}(\mathbb{R})\cap L^{2}(\mathbb{R})}\quad \kappa(\omega)=\frac{\omega}{c}+\mathrm{i}\kappa_{\infty}+\kappa_{*}(\omega),\quad\forall\omega\in\mathbb{R}$$

#### Thermo-viscous model



### Kowar-S-Bonnefond model

| Attenuation:                | $egin{aligned} \kappa:\mathbb{R}	o\mathbb{C},\ \kappa(\omega)=\omega\left(1+rac{lpha}{\sqrt{1+(-\mathrm{i}	au\omega)^\gamma}} ight),\ \widetilde{\kappa}(z)=\kappa(z) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Speed:                      | $c = \lim_{\omega \to \infty} \frac{\mathrm{i}\omega}{\tilde{\kappa}(\mathrm{i}\omega)} = \lim_{\omega \to \infty} \frac{1}{1 + \frac{\alpha}{\sqrt{1 + (\tau\omega)^{\gamma}}}} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Туре:                       | Strong attenuation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Range of $\tilde{\kappa}$ : | $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $ |  |

FШF

#### Power law $\sim$ Szabo

| Model:                      | Power law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Coefficient:                | $\kappa:\mathbb{R}	o\mathbb{C}$ , $\kappa(\omega)=\omega+\mathrm{i}lpha(-\mathrm{i}\omega)^\gamma$ , $	ilde\kappa(z)=\kappa(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Parameters:                 | $\gamma \in (0,1),  lpha > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Upper bound:                | $ 	ilde{\kappa}(z)  \leq  z  + lpha  z ^{\gamma} \leq lpha (1-\gamma) + (1+lpha \gamma)  z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Propagation speed:          | $c = \lim_{\omega 	o \infty} rac{\mathrm{i}\omega}{	ilde{\kappa}(\mathrm{i}\omega)} = \lim_{\omega 	o \infty} rac{1}{1 + lpha \omega^{\gamma-1}} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Attenuation type:           | Strong attenuation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Range of $\tilde{\kappa}$ : | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ |  |  |

## Modified Szabo's model

| Coefficient:                | $\kappa:\mathbb{R}	o\mathbb{C},\ \kappa(\omega)=\omega\sqrt{1+lpha(-\mathrm{i}\omega)^{\gamma-1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameters:                 | $\gamma \in (0,1), \ lpha > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Upper bound:                | $ 	ilde{\kappa}(z)  \leq rac{1}{2}lpha(1-\gamma) + (1+rac{lpha}{2}(1+\gamma)) z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Speed:                      | $c = \lim_{\omega \to \infty} \frac{\mathrm{i}\omega}{\tilde{\kappa}(\mathrm{i}\omega)} = \lim_{\omega \to \infty} \frac{1}{\sqrt{1 + \alpha \omega^{\gamma - 1}}} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Туре:                       | Strong attenuation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Range of $\tilde{\kappa}$ : | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $ |  |  |

FШF

## Nachman-Smith-Waag

| Coefficient:                | $\kappa: \mathbb{R} \to \mathbb{C}, \ \kappa(\omega) = rac{\omega}{c_0} \sqrt{rac{1 - \mathrm{i}	ilde{	au}\omega}{1 - \mathrm{i}	au\omega}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters:                 | $c_0 > 0, \ \tau > 0, \ \tau \in (0, \tau)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Extension:                  | $	ilde{\kappa}:\overline{\mathbb{H}}	o \mathbb{C}, \ rac{z}{c_0}\sqrt{rac{1-\mathrm{i}	ilde{	au}z}{1-\mathrm{i}	au z}}, \  	ilde{\kappa}(z) \leq rac{1}{c_0} z  	ext{ for all } z\in\overline{\mathbb{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Speed:                      | $c = \lim_{\omega 	o \infty} rac{\mathrm{i} \omega}{	ilde{\kappa}(\mathrm{i} \omega)} = \lim_{\omega 	o \infty} c_0 \sqrt{rac{1+	au \omega}{1+	ilde{	au}}} = c_0 \sqrt{rac{	au}{	ilde{	au}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Type:                       | Weak attenuation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Range of $\tilde{\kappa}$ : | $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $ |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Peter Elbau $^1$ , Otmar Scherzer $^{1,2}$ , Cong Shi $^1$ Mathematical Imaging with Optical Coherence

#### Photoacoustic equation in $\mathcal{F}$ -domain: recalled

The solution p of the attenuated wave equation in Fourier domain:

$$egin{aligned} \check{p}(\omega,x) &= \int_{\mathbb{R}^3} G_\kappa(\omega,x-y) \mathcal{H}(y) dy \ &= -rac{\mathrm{i}\omega}{4\pi\sqrt{2\pi}} \int_{\mathbb{R}^3} rac{\mathrm{e}^{\mathrm{i}\kappa(\omega)|x-y|}}{|x-y|} \mathcal{H}(y) dy, \qquad \omega \in \mathbb{R}, \; x \in \mathbb{R}^3 \end{aligned}$$

Measurement data of photoacoustics

 $\check{m}(\omega,\xi) = \check{p}(\omega,\xi) \quad \forall \omega \in \mathbb{R}, \ \xi \in \partial \Omega$ 

**ЕШГ** 29 / 40

May 5, 2017

#### Alternative equation: integrated photoacoustic operator

Inverse problem of attenuated photoacoustics: Find  ${\mathcal H}$  such that

$$\frac{1}{-\mathrm{i}\omega}\check{m}(\omega,\xi)=\frac{1}{-\mathrm{i}\omega}\check{p}(\omega,\xi),\quad\forall\omega\in\mathbb{R},\ \xi\in\partial\Omega$$

Meaning that the data are integrated in time-domain before inversion!

May 5, 2017

## Integrated photoacoustic operator

Let  $\Omega \subset \mathbb{R}^3$  be a bounded Lipschitz domain and  $\Omega_{\varepsilon} = \{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \varepsilon\}$ 

 $\kappa$  denotes either a strong or a weak attenuation coefficient

Definition

$$egin{split} \check{\mathcal{D}}_{\kappa}: L^2(\Omega_{arepsilon}) &
ightarrow L^2(\mathbb{R} imes \partial \Omega), \ \mathcal{H} &
ightarrow rac{1}{4\pi\sqrt{2\pi}} \int_{\Omega_{arepsilon}} rac{\mathrm{e}^{\mathrm{i}\kappa(\omega)|\xi-y|}}{|\xi-y|} \mathcal{H}(y) dy \end{split}$$

is called integrated photoacoustic operator of the attenuation coefficient  $\kappa$  in frequency domain

# Properties of integrated photoacoustic operator

Let  $\check{\mathcal{P}}_{\kappa} : L^2(\Omega_{\varepsilon}) \to L^2(\mathbb{R} \times \partial \Omega)$  be the integrated photoacoustic operator of a weak or a strong attenuation coefficient  $\kappa$ :

#### Theorem

Then,  $\check{\mathcal{P}}_{\kappa}^{*}\check{\mathcal{P}}_{\kappa}: L^{2}(\Omega_{\varepsilon}) \to L^{2}(\Omega_{\varepsilon})$  is a self-adjoint integral operator with kernel  $F \in L^{2}(\Omega_{\varepsilon} \times \Omega_{\varepsilon})$  given by

$$F_{\kappa}(x,y) = \frac{1}{32\pi^3} \int_{-\infty}^{\infty} \int_{\partial\Omega} \frac{\mathrm{e}^{\mathrm{i}\kappa(\omega)|\xi-y|-\mathrm{i}\kappa(\omega)|\xi-x|}}{|\xi-y||\xi-x|} dS(\xi) d\omega,$$

that is

$$\check{\mathcal{P}}_{\kappa}^{*}\check{\mathcal{P}}_{\kappa}h(x) = \int_{\Omega_{\varepsilon}} F_{\kappa}(x,y)h(y)dy$$

In particular,  $\check{\mathcal{P}}_{\kappa}^{*}\check{\mathcal{P}}_{\kappa}$  is a Hilbert–Schmidt operator and thus compact

Proof: lengthy

FILIE

#### Singular values of IPO for strongly attenuating media

Kernel estimates<sup>1</sup>

Lemma

For strongly attenuation  $\kappa$  the kernel  $F_{\kappa}$  of  $\check{\mathcal{P}}_{\kappa}^*\check{\mathcal{P}}_{\kappa}$  satisfies

$$\exists_{B,b>0} \frac{1}{j!} \sup_{x,y\in\Omega_{\varepsilon}} \sup_{v\in S^2} \left| \frac{\partial^j}{\partial s^j} \right|_{s=0} F_{\kappa}(x,y+sv) \right| \le Bb^j j^{(\frac{N}{\beta}-1)j} \qquad \forall j\in\mathbb{N}_0$$

 $N \in \mathbb{N}$  denotes the exponent for  $\ell = 0$  (polynomial condition) and  $\beta \in (0, N]$  is the exponent in the condition for the strong attenuation coefficient  $\kappa$ 

Peter Elbau $^1$ , Otmar Scherzer $^{1,2}$ , Cong Shi $^1$ Mathematical Imaging with Optical Coherence

#### Singular values of IPO for strongly attenuating media

Let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^3$  and  $\varepsilon>0$ 

#### Corollary

Let  $\check{\mathcal{P}}_{\kappa} : L^2(\Omega_{\varepsilon}) \to L^2(\mathbb{R} \times \partial \Omega)$  be the integrated photoacoustic operator of a strong attenuation coefficient  $\kappa$ .

Then, there exist constants C, c > 0 such that the eigenvalues  $(\lambda_n(\check{\mathcal{P}}^*_\kappa \check{\mathcal{P}}_\kappa))_{n \in \mathbb{N}}$  (in decreasing order) satisfy

$$\lambda_n(\check{\mathcal{P}}^*_\kappa\check{\mathcal{P}}_\kappa) \leq Cn\sqrt[m]{n}\exp\left(-cn^{rac{eta}{Nm}}
ight) \quad \forall n\in\mathbb{N}$$

Peter Elbau<sup>1</sup>, Otmar Scherzer<sup>1,2</sup>, Cong Shi<sup>1</sup>Mathematical Imaging with Optical Coherence

FILE

Singular values of IPO for weakly attenuating media Split

$$\begin{split} \check{\mathcal{P}}_{\kappa} &= \check{\mathcal{P}}_{\kappa}^{(0)} + \check{\mathcal{P}}_{\kappa}^{(1)}, \\ \check{\mathcal{P}}_{\kappa}^{(0)}h(\omega,\xi) &= \frac{1}{4\pi\sqrt{2\pi}} \int_{\Omega_{\varepsilon}} \frac{\mathrm{e}^{\mathrm{i}\frac{\omega}{c}|\xi-y|}}{|\xi-y|} \mathrm{e}^{-\kappa_{\infty}|\xi-y|} h(y) dy \\ \check{\mathcal{P}}_{\kappa}^{(1)}h(\omega,\xi) &= \frac{1}{4\pi\sqrt{2\pi}} \int_{\Omega_{\varepsilon}} \frac{\mathrm{e}^{\mathrm{i}\frac{\omega}{c}|\xi-y|}}{|\xi-y|} \mathrm{e}^{-\kappa_{\infty}|\xi-y|} (\mathrm{e}^{\mathrm{i}\kappa_{*}(\omega)|\xi-y|} - 1) h(y) dy \end{split}$$

 $(\check{\mathcal{P}}^{(0)}_{\kappa},\check{\mathcal{P}}^{(1)}_{\kappa})$  photoacoustic operator with constant attenuation and the perturbation

#### Lemma

Let  $\kappa$  be a weak attenuation coefficient. Then, there exist constants  $C_1$ ,  $C_2 > 0$  such that we have

$$C_1 n^{-\frac{2}{3}} \leq \lambda_n (\check{\mathcal{P}}^*_\kappa \check{\mathcal{P}}_\kappa) \leq C_2 n^{-\frac{2}{3}} \quad \forall n \in \mathbb{N}$$

### Summary

| Medium type        | Examples                                                                                         | Singular values decay  |
|--------------------|--------------------------------------------------------------------------------------------------|------------------------|
| No attenuation     | $\kappa(\omega) = rac{\omega}{c_0}$                                                             | $n^{-2/3}$ (Palamodov) |
| Weak attenuation   | Nachman-Smith-Waag                                                                               |                        |
|                    | $\kappa(\omega) = rac{z}{c_0} \sqrt{rac{1-\mathrm{i}	ilde{	au}\omega}{1-\mathrm{i}	au\omega}}$ | $n^{-2/3}$             |
| Strong attenuation | Thermo-viscous model                                                                             |                        |
|                    | $\kappa(\omega) = rac{\omega}{\sqrt{1-i	au\omega}}$                                             | $e^{-cn^{C}}$          |

FШF

p,  $p_a$  solutions of wave equation with  $-\omega^2$  and  $\kappa^2(\omega)$ .

$$q_a(t,x) = \int_{-\infty}^t p_a(\tau,x) d\tau$$
 and  $q(t,x) = \int_{-\infty}^t p(\tau,x) d\tau$ 

Then

$$q^{a}(t,x) = \int_{\mathbb{R}} \left( \mathcal{F}f^{-1}\left(e^{\mathrm{i}\kappa(\omega)\tau}\right) \right)(t)q(\tau,x)d\tau$$

FШF

May 5, 2017 37 / 40

For constant attenuation  $\kappa_\infty > 0$  (independent of  $\omega$ )

$$\kappa(\omega) = \omega + \mathrm{i}\kappa_\infty$$

we have

$$\mathcal{H}=B_{p}\frac{\partial}{\partial t}(Mq^{a})$$

where

• 
$$M = e^{k_{\infty}t}$$

• B<sub>p</sub> backprojection without attenuation

FШF

#### References



P. Elbau, O. Scherzer, and C. Shi.

Singular values of the attenuated photoacoustic imaging operator. Preprint on ArXiv arXiv:1611.05807, University of Vienna, Austria, 2016.



Backprojection for Photoacoustic Imaging in Weakly Attenuating Media. Preprint, University of Vienna, Austria, 2017.



#### Attenuation models in photoacoustics.

In H. Ammari, editor, Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies. Springer Verlag, Berlin Heidelberg, 2012.



R. Kowar, O. Scherzer, and X. Bonnefond.

Causality analysis of frequency-dependent wave attenuation. *Math. Methods Appl. Sci.*, 34:108–124, 2011.



A. I. Nachman, J. F. Smith, III, and R. C. Waag.

An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Amer., 88(3):1584–1595, 1990.



#### V. P. Palamodov.

Remarks on the general Funk transform and thermoacoustic tomography. Inverse Probl. Imaging, 4(4):693–702, 2010.



#### T.L. Szabo.

Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Amer., 96:491–500, 1994.

#### Thank you for your attention

May 5, 2017 40 / 40